

The Future of Cloud: Strategy, Investments and Future Innovation Areas

The core incubations and disruptive technologies shaping the cloud's future and the next wave of innovation across industry, government and society

Sara Nagy Senior Director, Customer Engagement

The Future of Cloud

FUTURE OF NETWORKING Modern Connected Applications **FUTURE OF COMPUTING** Artificial Intelligence & Quantum at Scale

The future of the cloud is applicable to businesses today

Modern Connected Applications

Smart factories

Remote piloting

Artificial Intelligence & Quantum at Scale

Earth observation

Chemical design

Biointelligence and biosecurity

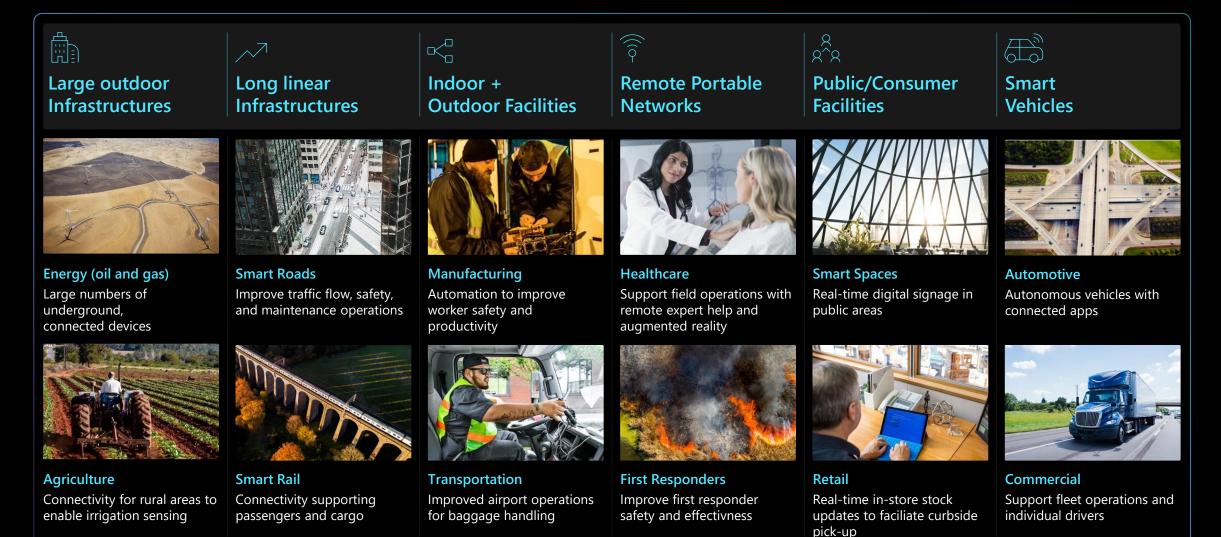
Banking fraud detection

New materials

Sustainable energy

Space

5G



Enabling a new breed of modern connected apps

We see new business scenarios emerging across industries

There are common patterns and needs as well across industries

Large outdoor Infrastructures	Long linear	Indoor + Outdoor Facilities	Remote Portable Networks	Public/Consumer Facilities	Smart Vehicles
 Air transport Energy Mining	• Transportation	Indu • Manufacturing • Retail	stries • Defense • First responders	Sporting eventsConcerts	• Automotive
Video analyticsDrones managementTelemetry analytics	 Video analytics Sensor analytics V2X Space/Orbital 	Patterns and • Video analytics • Autonomous guided vehicles	d Techniques • Video Analytics • Portable 5G network • Space/Orbital • AR headsets	Video streamingInfotainmentUser to user	 Video analytics Car2Car communication Infotainment AI car control
 Smart Airports Oil/gas infra Mining infra Port operations 	Smart RoadsSmart Rail	Use • Smart Factory • Store checkout	Cases • Tactic units • War ships • Firefighters	Stadiums and arenasArts venues	 Connected vehicles Remote control Autonomous vehicles Fleet management

Inventec and Nexcom: Transforming factory operations with private 5G

Inventec's connectivity infrastructure solution enables factories to become smart factories

Efficiency is unlocked with automated optical inspection, image recognition, remote collaboration, and more

Future of Computing

Ó

AI

Earth observation

Harvard Business Review

Innovation

Your Company Needs a Space Strategy. Now.

Rapidly falling launch costs and fleets of new satellites are opening up big opportunities for business. by Matthew Weinzierl, Prithwiraj (Raj) Choudhury, Tarun Khanna, Alan MacCormack, and Brendan Rosseau

From the Magazine (November-December 2022)

Planetary Computer Data

~67PB of Earth data, over 100 collections

Remote sensing data

- Landsat 4-9
- Sentinel-1, -2, -3, -5P
- GOES-16, -17, -18
- MODIS, NAIP, ASTER,

Weather/climate data • CMIP6, ERA5, GFS, ISD, NEXRAD,

Land cover data

• CCI, Corine, CCAP, NLCD, CDL, USGS GAP, Esri/Impact Observatory 10m

Biodiversity data • GBIF, NatureServe MoBI

...and many more

Evolution of satellite imagery

Landsat-7 (1999) Ikonos-2 (circa 2000) WorldView-3 (circa 2015) Corona (1967)

Pleades Neo Satellite Image - Tucson - USA © Airbus DS 2021

.

ara

-

2

Pléiades Neo - Tucson - USA - Acquisition angle 31°

- A the Market Print

NT - F

WHITE THE

小士林本生生

いたたちを

.

Pléiades Neo Satellite Image - Tucson - USA © Airbus DS 2021

Microsoft Premonition

Hyperconnected multi-source sensing & data

Assess Ŷ **Climate security** Arthropod Biological **Advanced** 1 \square Predict **AI Models** Animal **Food security** ڲؚ Human Abiotic React Geospatial

Biosecurity

Our goal is to compress the next 250 years of chemistry into the next 25."

Satya Nadella

Our approach to Quantum Computing

Accelerate scientific discovery

Engineer a quantum supercomputer

Enable a quantum-ready ecosystem **AZURE QUANTUM**


Elements

Accelerating scientific discovery

Hicrosoft | Azure Quantum Our Story - Learn and try - Community - News and events - Quantum portal -

All Microsoft ~ Search Q

Home / Quantum coding

🕼 Quantum Copilot PREVIEW 0/500 \triangleleft \triangleright Responses may be inaccurate and contain sensitive info. Review all responses for accuracy. Learn more about Quantum Copilot. Read the Al Terms of Use.

Pacific Northwest NATIONAL LABORATORY

From simulation to full synthesis of new viable material in a proof-ofconcept battery.

Ephaper																	
3 ⁰⁰⁸ Li	⁴ Be											5 B 2	6 DIIS C	7 NII4 N Mage	8 0	^{ه: الله}	
¹¹ Nа	12 ^{20,114} Mg Maguaka											13 ^{30,000} Al	14 3118 Si see	15 2010 P Marghani	16 ^{23,15} S 16	17 Cl Cl	
19 ^{30,000} K	20 °(.** Ca ::151 #	21 Comm Sc conthe	22 °.at Ti tinior	23 ^{100/48} V 100/48 0	24 Cr	25 5000 Mn Mn	26 Te Fe	27 CO	28 Ni Ni	29 ⁶¹⁸¹ Cu ****	30 °.* Zn 2k	31 Ga	Ge	33 NOT	34 Se Se other	35 "(# Br	
37 Rb	38 57 Sr 570040	39 1000 Y Vite 1	40 1.00 Zr	41 N/M Nb 1011	42 8.18 Mo						48 Cd Cd 54 min	49 ***	50 Sn	51 Sb	52 me Te	53 ^{majar} nam	
55 CS	56 Ba		72	73 Ta	74 W	Re Beau						81 ^{214,007} Tl Tribur	82 Pb	Bi Linat			
		57 '3.88 La															
		Lathursen				Э	5		C	ſ			ſ	Y	7		
32,600,000																	

500,000

800 **DFT on HPC validation** Physics-based simulations

150

18

Molecular dynamics on HPC Al-accelerated MD simulations

Elements-trained Al Models

Expert guided AI Models Availability/novelty/etc.

HUMAN INFORMED VALIDATION

New electrolyte

~ 70% less lithium compared to existing lithium-ion batteries

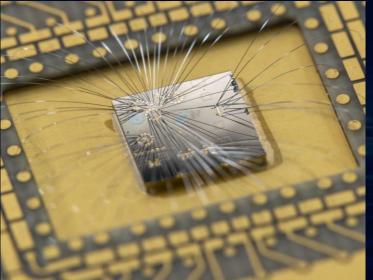
ΑI INFERENCE

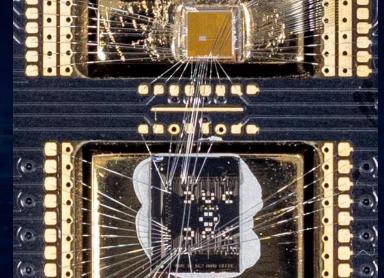
Fast AI screening + AI/HPC Simulation Material stability + Physics-based simulations

Relevant element replacement in crystal structure

Faster materials discovery with AI acceleration

HPC SCREENING


Quantum at scale: Our approach


Quantum will require millions of physical qubits to unlock industrial-scale capabilities

Fast

Controllable

Empower an open and inclusive ecosystem

Thank you!

https://aka.ms/futureofcloud