
Machine Learning

Past, Present, and Future

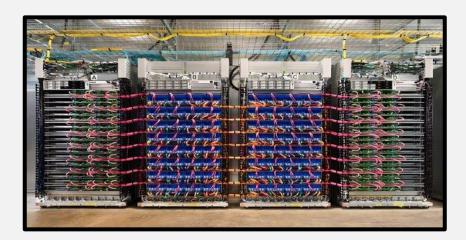
Luke Heffernan, Australian Institute for Machine Learning (AIML)

The IoT Connection, Hyperconverged Hybrid Networks: Space. Stratosphere. Terrestrial.

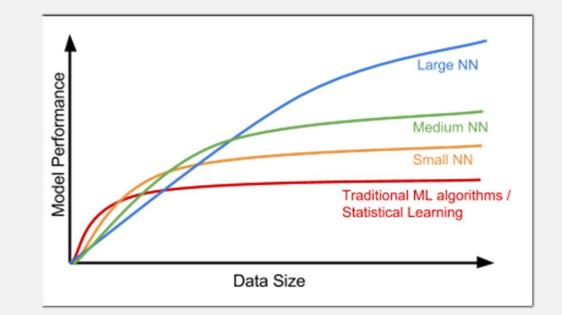
About Me

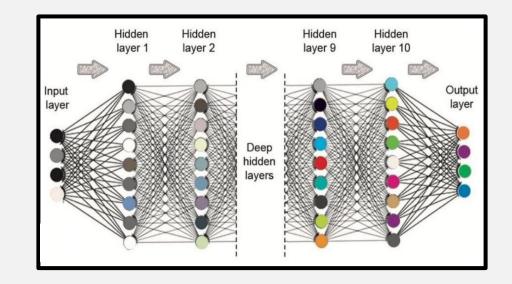
- Managed AI/ML projects in:
 - Space, defence, art, agriculture, traffic optimisation, communications, more
- Founded and assisted companies implementing AI
- Researching alongside world leaders in research and development
- AIML globally 6th best in computer vision

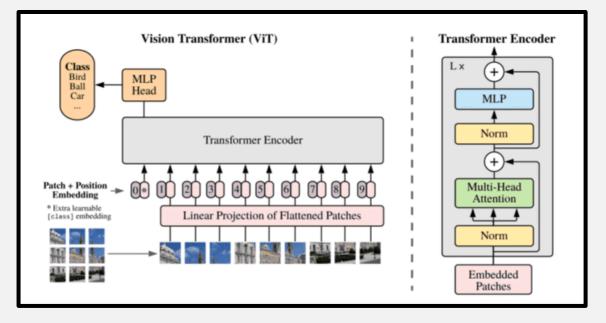
What To Expect


- Brief history of AI
 - From ideas to reality
 - Concepts
- General does and don'ts
 - With examples
- Brainstormed use cases
- Blend of technical and analogy
 - Further reading
 - Some parts will be skimmed
 - Slides and links available on Linktree:

History


- Ancient ideas of automaton
- Beginning of computation
 - Expert systems, basic neural networks
- Deep learning
 - Computational scale, latest AI boom


Enablers


- Better processors, smarter processing
 - CPUs vs GPU, TPUs
- More effective, efficient, tailored algorithms
- Investment, education, and expertise

Recent' Big News

- Transformers (2017, ancient)
 - Massively increased size -> memory
- Large language models
 - GPT-2/-3/-4
 - ChatGPT

Concepts

- Some understand analogies to pattern recognition or compression
- Different algorithms for:
 - Text
 - Images
 - Audio
 - Long vs short term memory
 - Training speed
 - Data volume

Concepts

- Learning Types
 - Supervised learning
 - Fully
 - Semi-
 - Un-
 - Weakly
 - Self-
 - Reinforcement learning
 - Generative
 - Adversarial
 - Diffusion

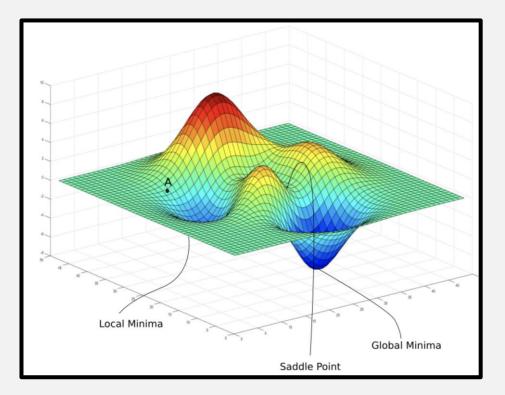
- Data Types
 - Audio:
 - Recurrent NNs (RNN), Long Short Term Memory Units (LSTMs), Gated Recurrent Units (GRUS), Transformers
 - Text:
 - RNNs, LSTMs, GRUs, Transformers
 - Images:
 - Convolutional NNs (CNNS), Visual Geometry Group (VGG), Visual Transformers (ViT)
 - Games/Interactions:
 - Reinforcement systems (Q learning, actor-critic, model-based, etc)

Rules/Suggestions of Thumb

All general rules have exceptions, often many

- Input = output
- Bigger = better
- Expertise needed
 - Machine learning
 - Subject matter
 - Soft skills

Input = Output


- Don't ask a vet for personal knee surgery
- Trends toward generality, but not reached

Bigger = better

- True for layers/data volumes/compute, with the right model
- False, with irrelevant data or poor model architecture

Expertise Needed

- Machine learning
 - Easy to trial, hard to perfect
 - Scale matters and multiplies skill*
- Subject matter
 - Measures of success
 - Input = output
- Soft skills

*Concepts to familiarise with: encoding, data types and formats, activation functions, catastrophic forgetting, batch sizes, learning rates, training types, real-world transferability, prediction types, layer number/size, dropout, feature, training augmentation, tests and assessments, data splits, model type and architecture, data pipelines, optimisers, iterations/epochs, entropy, memory allocation, warm-up, fine-tuning, convergence, synthetic vs real data, collection and verification, data processing, hallucination recognition, learning types, reward functions, shortcut mitigation, psychology and interpretation, bias mitigation, filtering...

Common Mistakes/Misconceptions

- Overconfidence
- A good model can fix bad data
 - Hidden patterns
 - Mess and noise
- Do you really need it?

Study #1: Burning Money 101

- Knight Capital auto-trading
 - KC traded 11% of all US stocks in early 2012
 - Lost \$440mil USD in 44 minutes (\$10mil/minute)
- If they can do it, anyone can

Study #1: Burning Money 101

- Implementation at KC
 - As simple as copying and pasting wrong
 - Errors in implementation and confidence
- Popularity in Financial Trading
 - Dangers of a little knowledge
 - Errors in expertise

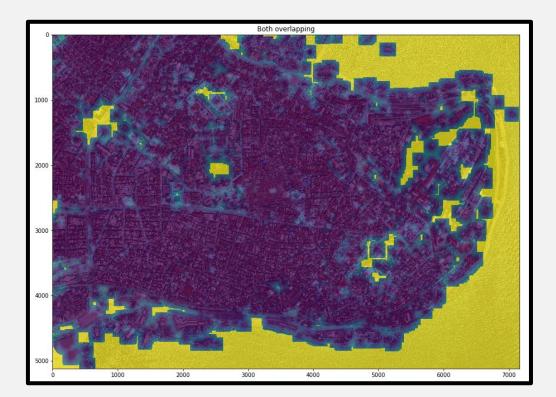
Study #2: Meta's Missing You

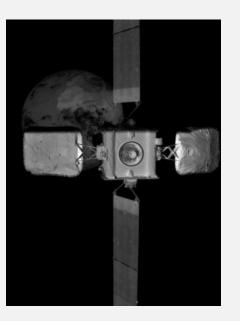
- Social networks
- Recommender systems in games, feeds, events, markets, groups, and more

Study #2: Meta's Missing You

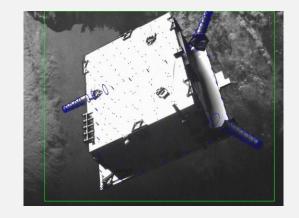
- Comprehensive approach
- Advertisers
 - Buyers and suppliers
- Proximity in network effects
 - The best data is your friends' data

Study #3: Emergency Response


- Natural disasters are universal and increasing
 - Omdena's 2020 project to mitigate human impact due to earthquake in Istanbul, Türkiye


Study #3: Emergency Response

- Omenda had AI expertise and relevant SMEs
 - SMEs advised reuniting families is priority #1
 - Created risk heatmap and path generator
- Well-defined problem
 - Intuitive interface allows easy use
 - Explored the root causes and related effects
- Similar approaches in fires and floods
 - AIML allowed firespread prediction and resource allocation for first responders



Potential use cases

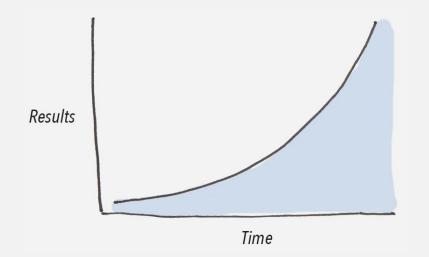
- Space Vehicle Conjunction
 - Pose estimation enables satellite docking, refuelling, resupply, in-space SDA
 - Northrup Grumman/SpaceLogistics flew the Mission Extension Vehicle 2 (MEV)
 - NASA, ESA, OrbitFab, Space Machines Co., HEO Robotics

An image of Intelsat 10-02 taken by MEV-2's infrared wide field of view camera at 15m away.

AIML's 1st place entry into ESA's <u>Pose</u> <u>Estimation Challenge 2021</u>

Potential use cases

- Life Monitoring and Support
 - Excels at balancing multi-sensor inputs
 - Many cases of detecting issues before they're issues
 - Optimise not just detection, but response and resources


- Non-destructive testing
 - Defect detection in manufactured items
- Low light imaging
 - X-ray results with 99% less radiation
- Mental health warning systems
 - Changes in message content and tone
- Consumer trend monitoring
 - Purchasing patterns
 - Right ways and wrong ways, e.g. Target

Potential use cases

- Life Monitoring and Support
 - Excels at balancing multi-sensor inputs
 - Many cases of detecting issues before they're issues
 - Optimise not just detection, but response and resources

- Non-destructive testing
 - Defect detection in manufactured items
- Low light imaging
 - X-ray results with 99% less radiation
- Mental health warning systems
 - Changes in message content and tone
- Consumer trend monitoring
 - Purchasing patterns
 - Right ways and wrong ways, e.g. Target

Future Directions (Disclaimer)

- Every time we guess, we're wrong
- Experts can't easily account for acceleration

• Hard to predict future of prediction

Future Directions

- Current focuses:
 - Reinforcement learning to interact with humans
 - Reliable integration of LLMs with other tools/programs
 - ML in a post-LLM world
 - Vision-language crossovers

- Suggestions:
 - Change will be fast, this is disruptive
 - For every interest or anxiety, endless answers, very few solutions
 - Adopt, be sceptical, engage experts

Future Directions

• Current focuses:

- Reinforcement learning to interact with humans
- Reliable integration of LLMs with other tools/programs
- ML in a post-LLM world
- Vision-language crossovers

• Suggestions:

- Change will be fast, this is disruptive
- For every interest or anxiety, endless answers, very few solutions
- Adopt, be sceptical, engage experts

+ session slides

Luke Heffernan

luke.heffernan@adelaide.edu.au