
Machine 

Learning

Past, Present, and Future

Luke Heffernan, Australian Institute for Machine Learning (AIML)

The IoT Connection, Hyperconverged Hybrid Networks: Space. Stratosphere. Terrestrial.



• Managed AI/ML projects in:
• Space, defence, art, agriculture, 

traffic optimisation, 
communications, more

• Founded and assisted companies 
implementing AI

• Researching alongside world 
leaders in research and 
development

• AIML globally 6th best in
computer vision

About Me



• Brief history of AI
• From ideas to reality

• Concepts

• General does and don’ts
• With examples

• Brainstormed use cases

• Blend of technical and analogy
• Further reading

• Some parts will be skimmed

• Slides and links available on Linktree:

What To Expect

Contact details

Slides (pdf)



• Ancient ideas of automaton

• Beginning of computation
• Expert systems, basic neural networks

• Deep learning
• Computational scale, latest AI boom

History



• Better processors, smarter 
processing

• CPUs vs GPU, TPUs

• More effective, efficient, tailored 
algorithms

• Investment, education, and 
expertise

Enablers



• Transformers (2017, ancient)
• Massively increased size -> memory

• Large language models
• GPT-2/-3/-4

• ChatGPT

‘Recent’ Big News

FURTHER READING



• Some understand analogies to 
pattern recognition or compression

• Different algorithms for:
• Text

• Images

• Audio

• Long vs short term memory

• Training speed

• Data volume

Concepts



• Data Types
• Audio:

• Recurrent NNs (RNN), Long Short 
Term Memory Units (LSTMs), 
Gated Recurrent Units (GRUS), 
Transformers

• Text:
• RNNs, LSTMs, GRUs, Transformers

• Images:
• Convolutional NNs (CNNS), Visual 

Geometry Group (VGG), Visual 
Transformers (ViT)

• Games/Interactions:
• Reinforcement systems (Q 

learning, actor-critic, model-based, 
etc)

Concepts

• Learning Types
• Supervised learning

• Fully

• Semi-

• Un-

• Weakly

• Self-

• Reinforcement learning

• Generative
• Adversarial

• Diffusion

FURTHER READING



All general rules have exceptions, often many

• Input = output

• Bigger = better

• Expertise needed
• Machine learning

• Subject matter

• Soft skills

Rules/Suggestions of Thumb



• Don’t ask a vet for personal knee surgery

• Trends toward generality, but not reached

Input = Output

Bigger = better

• True for layers/data volumes/compute, with the right model

• False, with irrelevant data or poor model architecture



• Machine learning
• Easy to trial, hard to perfect

• Scale matters and multiplies skill*

• Subject matter
• Measures of success

• Input = output

• Soft skills

Expertise Needed

*Concepts to familiarise with: encoding, data types and formats, activation functions, catastrophic forgetting, batch sizes, learning 
rates, training types, real-world transferability, prediction types, layer number/size, dropout, feature, training augmentation, tests 
and assessments, data splits, model type and architecture, data pipelines, optimisers, iterations/epochs, entropy, memory 
allocation, warm-up, fine-tuning, convergence, synthetic vs real data, collection and verification, data processing, hallucination 
recognition, learning types, reward functions, shortcut mitigation, psychology and interpretation, bias mitigation, filtering…



• Overconfidence

• A good model can fix bad data
• Hidden patterns

• Mess and noise

• Do you really need it?

Common Mistakes/Misconceptions



• Knight Capital auto-trading
• KC traded 11% of all US stocks in early 

2012

• Lost $440mil USD in 44 minutes 
($10mil/minute)

• If they can do it, anyone can

Study #1: Burning Money 101



• Implementation at KC
• As simple as copying and pasting wrong

• Errors in implementation and confidence

• Popularity in Financial Trading
• Dangers of a little knowledge

• Errors in expertise

Study #1: Burning Money 101



• Social networks

• Recommender systems in games, feeds, events, markets, groups, and more

Study #2: Meta’s Missing You  



• Comprehensive approach

• Advertisers
• Buyers and suppliers

• Proximity in network 
effects

• The best data is your 
friends’ data

Study #2: Meta’s Missing You 



• Natural disasters are universal and increasing
• Omdena’s 2020 project to mitigate human impact due to earthquake in Istanbul, Türkiye

Study #3: Emergency Response 



• Omenda had AI expertise and relevant 
SMEs

• SMEs advised reuniting families is priority #1

• Created risk heatmap and path generator

• Well-defined problem
• Intuitive interface allows easy use

• Explored the root causes and related effects

• Similar approaches in fires and floods
• AIML allowed firespread prediction and 

resource allocation for first responders

Study #3: Emergency Response 



• Space Vehicle Conjunction
• Pose estimation enables satellite 

docking, refuelling, resupply, in-space 
SDA

• Northrup Grumman/SpaceLogistics
flew the Mission Extension Vehicle 2 
(MEV)

• NASA, ESA, OrbitFab, Space Machines 
Co., HEO Robotics

Potential use cases

An image of Intelsat 10-02 taken by 

MEV-2’s infrared wide field of view 

camera at 15m away.

AIML’s 1st place entry into ESA’s Pose 

Estimation Challenge 2021 

https://kelvins.esa.int/pose-estimation-2021/
https://kelvins.esa.int/pose-estimation-2021/


• Non-destructive testing
• Defect detection in manufactured 

items

• Low light imaging
• X-ray results with 99% less radiation

• Mental health warning systems
• Changes in message content and 

tone

• Consumer trend monitoring
• Purchasing patterns

• Right ways and wrong ways, e.g. 
Target

Potential use cases

• Life Monitoring and Support
• Excels at balancing multi-sensor inputs

• Many cases of detecting issues before 
they’re issues

• Optimise not just detection, but 
response and resources
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• Hard to predict future of prediction

Future Directions (Disclaimer)

• Every time we guess, we’re wrong

• Experts can’t easily account for acceleration



• Current focuses:
• Reinforcement learning to interact with humans

• Reliable integration of LLMs with other tools/programs

• ML in a post-LLM world

• Vision-language crossovers

• Suggestions:
• Change will be fast, this is disruptive

• For every interest or anxiety, endless answers, very few solutions

• Adopt, be sceptical, engage experts

Future Directions
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Luke Heffernan

luke.heffernan@adelaide.edu.au

+ session slides
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