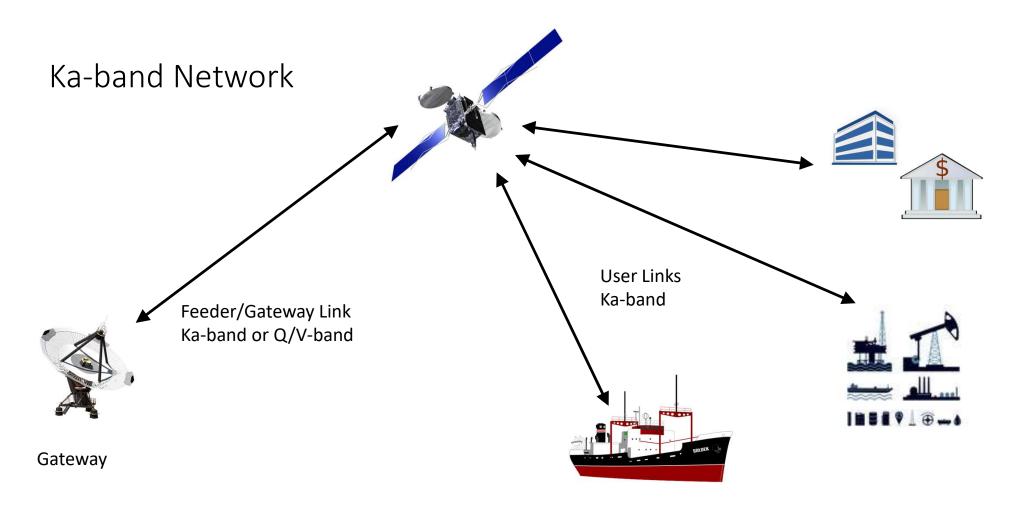


Using AI to Optimise HTS and VHTS Ground Network Design and Operations

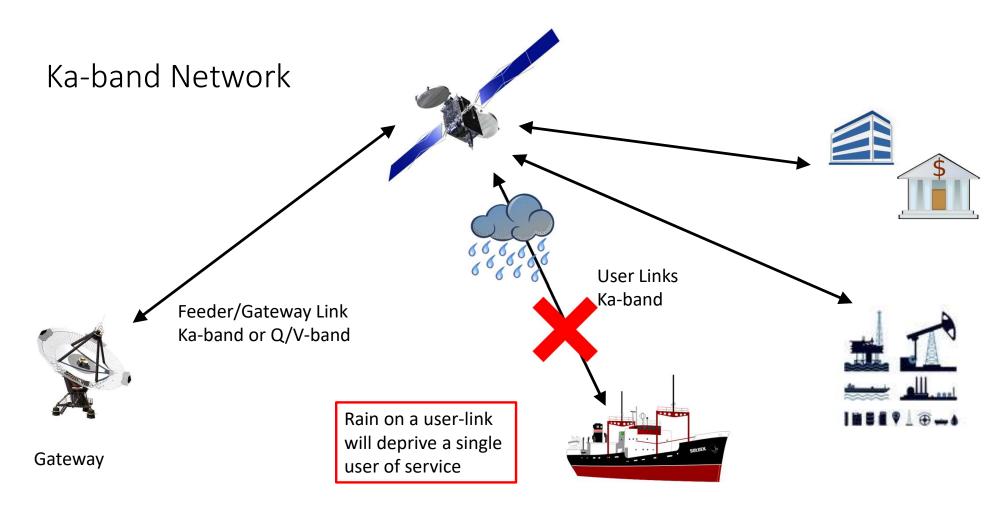
John Yates, Managing Director February 2024

What do we do?

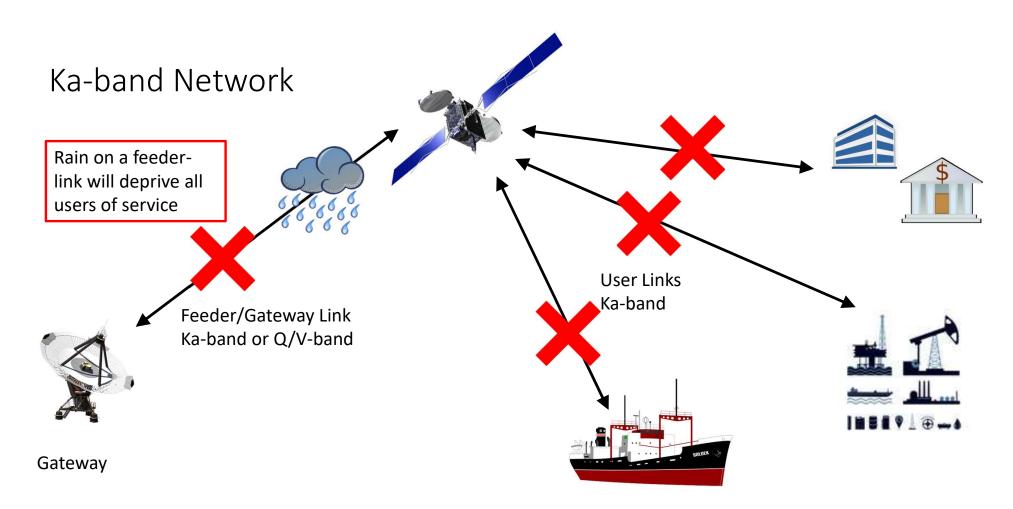
Atheras Analytics uses Artificial Intelligence to design and operate networks of ground stations/gateways for HTS and VHTS systems

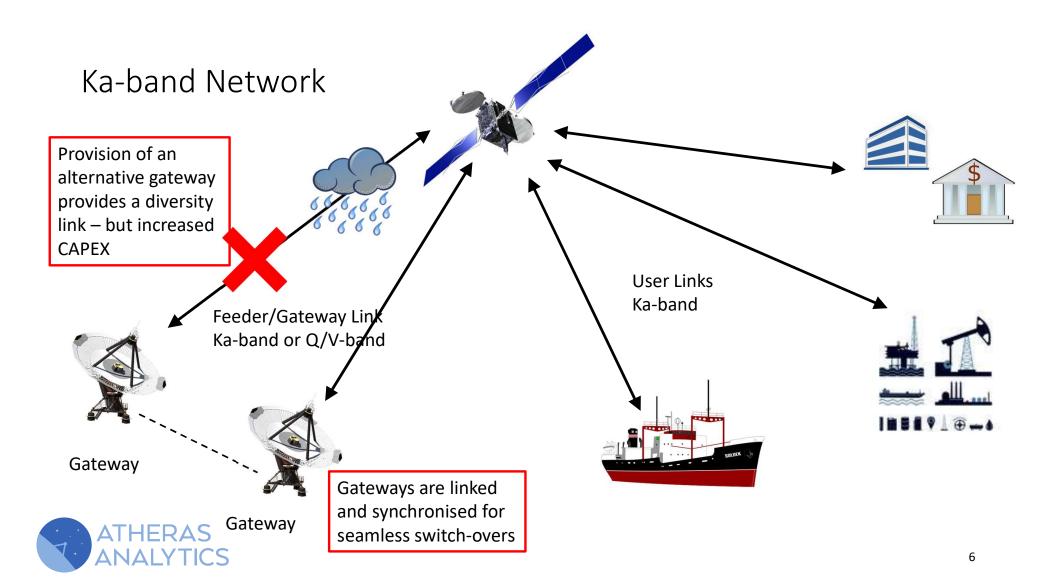


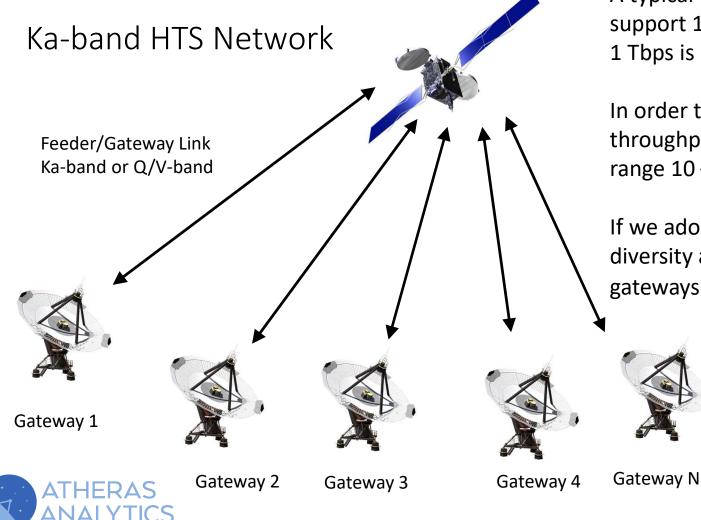
Challenge and Solution


- Next generation High Throughput Satellite (HTS) networks can deliver more than
 20x the data capacity of traditional satellites at a fraction of the cost per bit
- However, the Ka-band and Q/V-band radio frequencies used by these HTS networks are <u>sensitive to significant atmospheric impairments</u>, primarily from rain
- And many more ground stations/gateways are needed to support the increased data rates/capacity

Atheras Analytics has developed a portfolio of AI-based, SaaS-delivered products that predict, manage and mitigate the impact of weather-related satellite link outages in HTS satellite systems employing Ka-band and Q/V-band frequencies to <u>reduce</u> <u>infrastructure costs</u> and <u>maximise network availability</u>



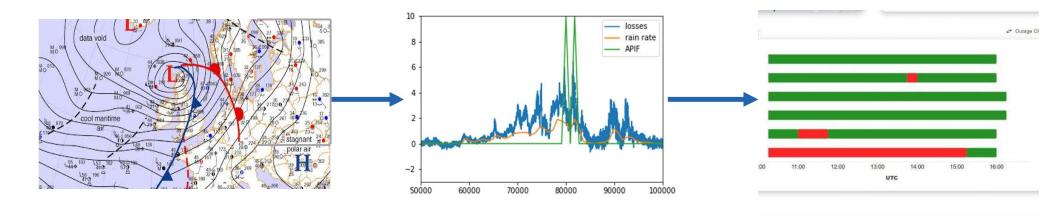




A typical HTS/VHTS satellite can support 100's Gbps of data. 1 Tbps is possible!

In order to support these throughputs, N needs to be in the range 10 - 200+

If we adopt a conventional 1:1 diversity arrangement, P standby gateways are needed where P=N


7

Smart Gateway Diversity (SGD)

- Smart Gateway Diversity (SGD) assumes that not all gateways will be simultaneously impaired by rain and therefore a smaller number of diversity (P) gateways can be "shared" between the active (N) gateways
- However it is no longer possible to keep gateways permanently synchronised as we don't know which standby gateway will be allocated to which active gateway until the need occurs.
- Gateway synchronisation can take 5-15 minutes so reactive switching will create outages
- How can we benefit from the cost—savings of implementing Smart Gateway Diversity without reducing QoS?

AI-based Outage Prediction Algorithm (OPA) – the core of our software tools

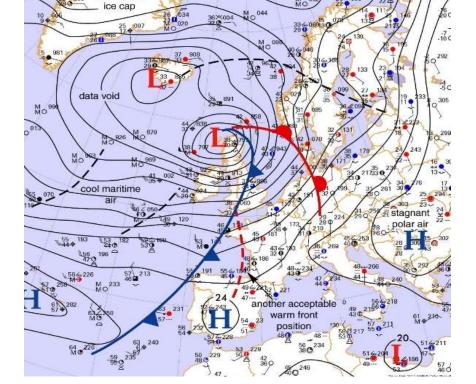
High resolution weather data

Applied to AI-based OPA

Event Predictions

Design Tool

- The Design Tool applies <u>historic</u> weather data to the OPA for all candidate gateway locations to determine the historic link availability for each gateway
- Atheras Analytics uses last five years of actual weather data, so <u>climate change</u> <u>effects are fully taken into account</u>
- Legacy analytical techniques use long-term statistical data which does not take into account recent climate change effects



SGD Design Tool

Greenland

Applying the OPA to multiple gateway locations across a region permits a satellite operator to

- analyse each candidate gateway site for historic link availability
- determine weather correlations between individual candidate sites and
- determine overall network availability for specific groups of gateway locations
- 30%-40% reduction in CAPEX and OPEX for satellite operators with no reduction in QoS

Design Tool – Example top-level inputs

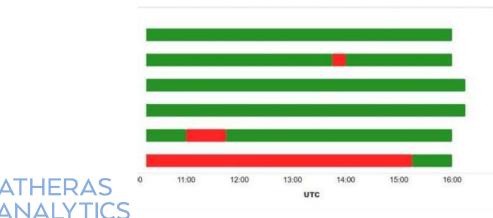
Individual Gateways				
Date Started March 20 2022 Date Completed March 20 2				Toggle M
Gateway Name	Latitude (deg N)	Longitude (deg E)	Forward Link SST (dB)	Return Link SST (dB)
Raisting	47.9	11.1	20.04	19.73
Oakhanger	51.11	-0.9	19.98	21.70
Vilafranca	42.13	-0.4	20.09	21.75
Gibralter	36.12	-5.34	20.14	21.76
Thessaloniki	40.64	22.96	20.20	21.78
Akyazi	40.68	30.62	20.15	21.77
Fucino	41.98	13.6	20.14	21.77

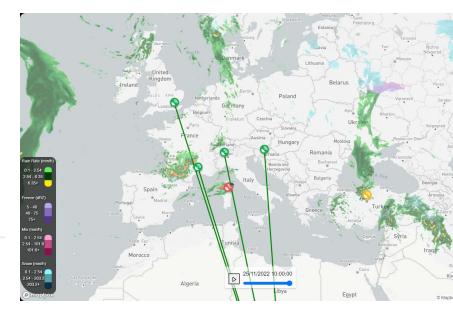
ATHERAS

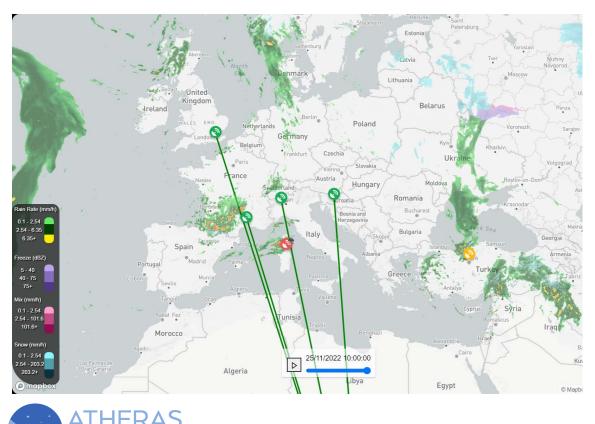
 $\mathbb{I}S$

Design Tool – Example detailed inputs

Gateways	;											
Gatewa	C/I (dB)	G/T (dB)	OBO (dB)	Standard	UPC Range (dB)	Polarization (°)	Antenna Diameter (m)	Feeder Losses (dB)	Transmitted Power (W)	Antenna Efficiency (m)	Carrier Frequency Uplink (GHz)	Carrie Frequer Downlir (GHz)
Raisting	20	33.2	6	DVB-S2	0	45	9.2	1	523	0.65	28	18
Oakhang	er 20	39.2	6	DVB-S2	0	45	9.2	1	523	0.65	28	18
Vilafranc	a 20	39.2	6	DVB-S2	0	45	9.2	1	523	0.65	28	18
Gibralte	r 20	39.2	6	DVB-S2	0	45	9.2	1	52 <mark>3</mark>	0.65	28	18
Thessalor	iki 20	39.2	6	DVB-S2	0	45	9.2	1	523	0.65	28	18
Akyazi	20	39.2	6	DVB-S2	0	45	9.2	1	523	0.65	28	18
Fucino	20	39.2	6	DVB-S2	0	45	9.2	1	523	0.65	28	18
4												

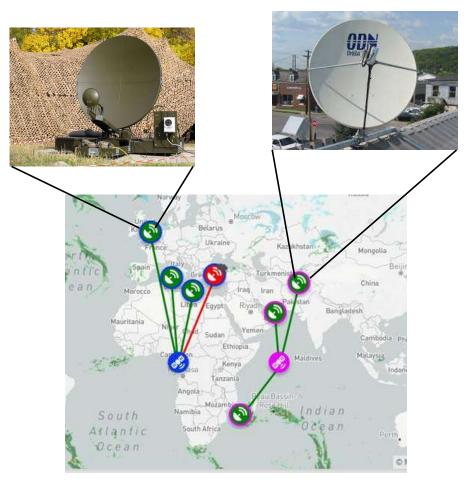

Design Tool – Example output


	-0.002	0.011	-0.01		-0.005		
Raisting	-0.017	0.004	1	-0.01	-0.018	-0.014	-0.02
Fucino	-0.019	1	0.004	0.011	0.005	-0.004	0.01
Akyazi		-0.019	-0.017	-0.002	-0.019	-0.011	0.012
	Akyazi	Fucino	Raisting	Gibralter	Oakhanger	Vilafranca	Thessaloniki
Smart Gatew	vay Diversity N	etwork					
Jinari Cuten							
	ay Diversity it	etwork					
Date Started M	larch 20 2022 17:32: d March 20 2022 17	24					
Date Started M	larch 20 2022 17:32:	24 7:46:55			Boot Cotomara Con	hingtion	Availability
Date Started M	larch 20 2022 17:32:	24	N	Р	Best Gateways Con	nbination	Availability
Date Started M	larch 20 2022 17:32:	24 7:46:55	N	Р	Raisting		Availability
Date Started M	larch 20 2022 17:32: d March 20 2022 17	24 7:46:55	N 3	P 1			Availability 0.99993
Date Started M Date Completed	larch 20 2022 17:32: d March 20 2022 17	24 7:46:55 Scenario Name			Raisting Oakhanger		
Date Started M Date Completed	larch 20 2022 17:32: d March 20 2022 17	24 7:46:55 Scenario Name			Raisting Oakhanger Gibralter		0.99993
Date Started M Date Completed	larch 20 2022 17:32: d March 20 2022 17	24 7:46:55 Scenario Name			Raisting Oakhanger Gibralter		
Date Started M Date Completed	larch 20 2022 17:32: d March 20 2022 17	24 7:46:55 Scenario Name			Raisting Oakhanger Gibralter		0.99993


SGD Operational Tool

- Weather <u>forecasts</u> are applied to the OPA
- The OPA is used to predict weather-related outages at individual satellite ground stations/gateways up to 6 hours in advance
- Traffic is transferred to unaffected gateways before the outage occurs
- Network availability is significantly improved

Operational Tool – Network Overview Example


• Five gateways available

- Four active links
- One gateway (red) in outage and unavailable
- One gateway (amber) about to go into outage within the hour
- Reducing service outages by 45% and hence improving Quality of Service (QoS) for satellite operators and end-users alike
- De-icing, sand-storm and high wind warnings also available

UTOPiA - User Terminal Outage Prediction Algorithm -

- End-users typically employ mobile, transportable or fixed systems with 1-2 metre antennas
- UTOPiA predicts link outages for endusers enabling 10,000's of missioncritical users to pre-empt a satellite link loss and mitigate the operational impact
- User trials successfully completed evaluation licences are available

What do we mean by mission critical users?

- Banking broadband for branches, narrow-band for ATMs
- Social Inclusion government-backed projects for Universal Service Obligations, rural connectivity, e-governance, education
- Energy public utilities (electric, water, waste etc), onshore and offshore oil & gas exploration and extraction, mining operations
- Mil/Gov military applications, civil applications including government, health and environment monitoring
- Others construction, civil engineering, Air Traffic Management

John Yates – Managing Director

john.yates@atherasanalytics.com

